Self-Dual codes from $(-1, 1)$-matrices of skew symmetric type

نویسندگان

  • José Ándrés Armario
  • María Dolores Frau
چکیده

Abstract. Previously, self-dual codes have been constructed from weighing matrices, and in particular from conference matrices (skew and symmetric). In this paper, codes constructed from matrices of skew symmetric type whose determinants reach the EhlichWojtas’ bound are presented. A necessary and sufficient condition for these codes to be self-dual is given, and examples are provided for lengths up to 52.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-dual Z4 codes of Type IV generated by skew-Hadamard matrices and conference matrices

In this paper, we give families of self-dual Z4-codes of Type IV-I and Type IV-II generated by conference matrices and skew-Hadamard matrices. Furthermore, we give a family of self-dual Z4-codes of Type IV-I generated by bordered skew-Hadamard matrices.

متن کامل

Skew Hadamard designs and their codes

Skew Hadamard designs (4n−1, 2n−1, n−1) are associated to order 4n skew Hadamard matrices in the natural way. We study the codes spanned by their incidence matrices A and by I +A and show that they are self-dual after extension (resp. extension and augmentation) over fields of characteristic dividing n. Quadratic Residues codes are obtained in the case of the Paley matrix. Results on the p−rank...

متن کامل

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

Quantum self-dual codes and symmetric matrices

In a recent paper Calderbank, Rains, Shor and Sloane [1] described a method of constructing quantum-error-correcting codes from ordinary binary or quaternary codes that are selforthogonal with respect to a certain inner product. We use this relation to show that a class of binary formally self-dual codes defined by symmetric matrices give rise to quantum codes with error-correcting capacity pro...

متن کامل

Symmetric matrices and quantum codes

In a recent paper Calderbank, Rains, Shor and Sloane [1] described a method of constructing quantum-error-correcting codes from ordinary binary or quaternary codes that are selforthogonal with respect to a certain inner product. We use this relation to show that a class of binary formally self-dual codes defined by symmetric matrices give rise to quantum codes with error-correcting capacity pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1311.2637  شماره 

صفحات  -

تاریخ انتشار 2013